

Direct Synthesis of Hydrogen Peroxide (>1 wt%) over the Cathode Prepared from Active Carbon and Vapor-Grown-Carbon-Fiber by a New H₂-O₂ Fuel Cell System

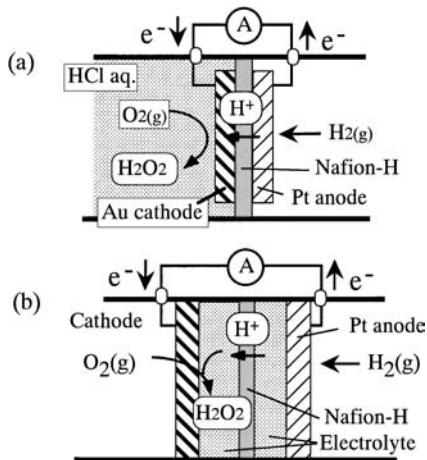
Ichiro Yamanaka,* Toshihide Hashimoto, and Kiyoshi Otsuka

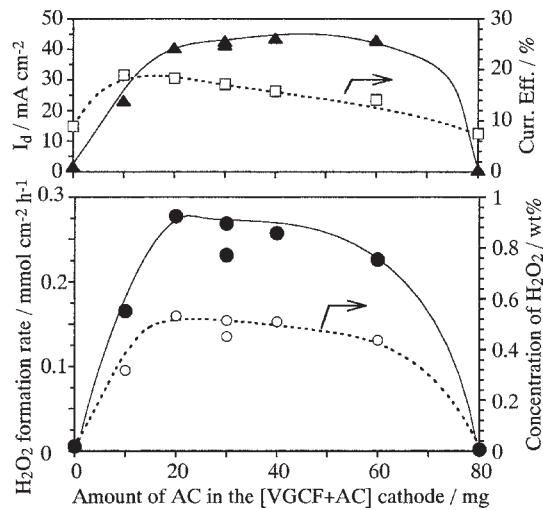
Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology,
Ookayama, Meguro-ku, Tokyo 152-8552

(Received May 1, 2002; CL-020379)

A higher concentration of H₂O₂ solution (>1 wt%) was catalytically and directly synthesized from O₂ and H₂ over a [active carbon + vapor-grown-carbon-fiber] cathode by a new type of fuel cell system at 1 atm.

Hydrogen peroxide is one of the most essential chemicals in the current chemical industry. Most of H₂O₂ is manufactured by the anthraquinone process through multi step operations with a large amount of energy consumption. A part of H₂O₂ is manufactured by the electrolysis of O₂ in alkaline solutions over the graphite cathode, as the on-site process for the pulp bleaching.¹ Process cost of the electrolysis method is expensive and cannot be applied for the general H₂O₂ production. Therefore, development of catalytic and direct synthesis method of H₂O₂ from O₂ and H₂ has been desired. It is well known that Pd/carbon catalyzes the formation of H₂O₂ from H₂ and O₂ in acidic aqueous solution, but it could not prevent the explosion of a mixture of O₂ and H₂.² We have reported a new catalytic system utilizing a H₂-O₂ fuel cell reactor for the direct synthesis of H₂O₂ from O₂ and H₂ under ambient conditions, as shown in Figure 1a.³ Advantages of the fuel cell system compared with the conventional catalytic system are (i) less opportunity of the explosion because of separation of O₂ and H₂ by the electrolyte membrane and (ii) high flexibility of application of catalysts for the activation of H₂ and the reduction of O₂. In our previous work, the maximum concentration of H₂O₂ (0.2 wt%, 59 mM) was low with a low current efficiency (CE) <10%, because the successive reduction of H₂O₂ to water was accelerated with accumulating H₂O₂. The formation reactions of H₂O₂ and water are competitive. The H₂O₂ concentration of 59 mM is far higher than that of O₂ (\approx 1 mM) limited by the solubility in an electrolyte




Figure 1. Diagram of the fuel cell reactor for H₂O₂ synthesis. a: The previous type of the cell, b: a new type of the cell in this work.

at atmospheric pressure. We have concluded that the concentrations of O₂ at the cathode must be increased to produce higher concentrated H₂O₂ solution.

We propose a new concept and a new fuel cell system for the H₂O₂ synthesis to enable to increase the concentrations of O₂ at the cathode at atmospheric pressure. Our idea is that a three-phase boundary (gas phase (O₂), liquid phase (acid solutions), and solid phase (cathode)),⁴ is applied for the electrochemical formation of H₂O₂, as shown in Figure 1b. Electrolyte solutions (HCl 1.2 N) filled two spaces between the gas-diffusion cathode and the Nafion-117 membrane and between the anode and the membrane (each volumes as 2.1 ml), as shown in Figure 1b. The apparent surface area of the both electrode is 1.3 cm⁻². Pure O₂ (10 ml min⁻¹) and H₂ (10 ml min⁻¹) were supplied to the cathode and anode, respectively at atmospheric pressure. A high partial pressure of O₂ (101 kPa, 45 mM) should be directly supplied to the active site at the three-phase boundary in the cathode. Therefore, the reduction of O₂ to H₂O₂ should be accelerated and the successive reduction of H₂O₂ should be decelerated, respectively.

First, various cathodes prepared from precious metal compounds (Pd-black, PdO, H₂PdCl₄, Au-black, HAuCl₄) of 20 mg,^{2,3} vapor-grown-carbon-fiber (VGCF, 13 m² g⁻¹, Showa-Denko Co.) of 50 mg, and PTFE powder of 5 mg by the hot-press method⁴ were tested for the H₂O₂ formation under short circuit conditions at 298 K. The VGCF was used as a support for cathode because of a high electric conductivity and a high chemical stability. When Pd-black was added to the VGCF cathode, the concentrations of H₂O₂ were determined over 0.6 wt% for 2 h by KMnO₄ titration, which was higher than the maximum of 0.2 wt% by the previous system for 24 h. This result clearly proves that the new cell system (Figure 1b) is effective for the synthesis of higher concentrated H₂O₂ solutions. After screening to find more effective electrocatalysts for the H₂O₂ formation, we have found the strong enhancement of addition of active carbon (AC, Wako Co., 1500 m² g⁻¹) to VGCF on the H₂O₂ formation. The concentration of H₂O₂ of 0.52 wt% over the [AC + VGCF] cathode (17% CE) was as well as 0.6 wt% for the [Pd-black + VGCF] cathode (9% CE). Therefore, we have focused our interest to the [AC + VGCF] cathode.

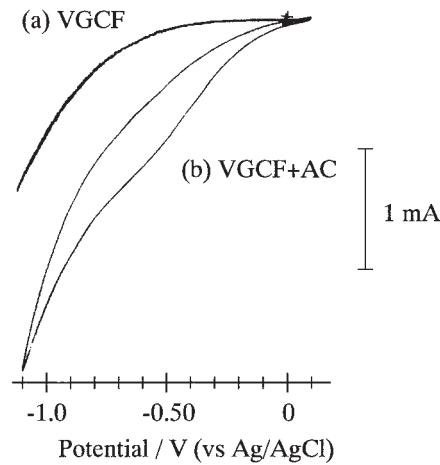
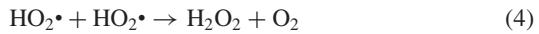


Figure 2 shows the effect of amount of AC (x mg) in the [AC (x) + VGCF (80-x) + PTFE (7)] cathode on the formation of H₂O₂. The VGCF cathode without addition of AC was not active for the formation of H₂O₂. The current density and the formation rate of H₂O₂ increased with increasing in the addition of AC. The maximum formation rate of H₂O₂ was observed around at the AC addition of 20 mg. Excess addition of AC to VGCF did not accelerate the formation rate of H₂O₂ and the electrochemical reduction rate of O₂. An AC cathode without VGCF didn't show any electrocatalytic activity for reduction of


Figure 2. Effect of amount of AC in the [VGCF + AC] cathode on the formation of H_2O_2 solutions during H_2 - O_2 fuel cell reactions for 2 h at 298 K. Electrolyte: HCl (1.2 N) 2 ml, anode: Pt-black (20 mg) + VGCF (70 mg) + PTFE (7 mg), H_2 101 kPa, cathode: [AC + VGCF] (80 mg) + PTFE (7 mg), O_2 101 kPa.

O_2 . The current efficiency for the formation of H_2O_2 increased from 8% to 19% by the addition of AC of 10 mg to the VGCF cathode. These results clearly propose a strong synergism of AC and VGCF on the electrochemical reduction of O_2 and on the formation of H_2O_2 .

To get information for the synergism of AC and VGCF and for the reaction mechanism of the H_2O_2 formation, electrochemical studies were carried out. The cathode potentials (vs Ag|AgCl) changed from 0.4 V (open circuit condition) to -0.06 V (short circuit condition) and anode potentials changed from -0.2 V (open) to -0.07 V (short). Most of electric motive force (0.6 V) was consumed for the cathode reactions; reduction of O_2 . Thus, the cathode reaction determined the H_2O_2 formation. A cyclic voltammetry (CV) for the VGCF electrode and the [VGCF + AC] electrode were studied under the same reaction conditions of the H_2O_2 formation in Figure 3. In the CV of the VGCF electrode (Figure 3a) at atmospheric pressure of O_2 , the reduction current was observed below -0.5 V, no reduction current of O_2 was observed at around 0 to -0.1 V, corresponding to the cathode potential for H_2O_2 formation under short circuit conditions. This observation is corresponding to low electrocatalytic activity of the VGCF cathode for the H_2O_2 formation. In the CV of the [VGCF + AC] electrode (Figure 3b), significant reduction current of O_2 was observed below 0 V. A large and broad shoulder peak around -0.5 V was observed. When the CV was scanned to a positive potential until $+1.0$ V, no oxidation peak was observed over the [VGCF + AC] electrode. Thus, the reduction peak in Figure 3b was irreversible one. Some standard redox potentials of O_2 in aqueous media at $\text{pH} = 1$ were well-known in eq. 1–3.⁵ On the basis of these standard potentials, the shoulder peak at around -0.5 V should be formation of HO_2^\bullet (eq. 3). It is reported that two HO_2^\bullet molecules heterogeneously convert to H_2O_2 and O_2 .⁵

Figure 3. Cyclic voltammograms over (a) the VGCF and (b) the (AC + VGCF) electrodes in 1.2 N HCl aq at atmospheric pressure of O_2 . Scan rate: 50 mV/s.

If this reaction route through eq. 3 and 4 for the H_2O_2 formation was true, more negative cathode potentials should be suitable for the formation of H_2O_2 . In fact, we observed increases in the formation rate of H_2O_2 , the current density, and the CE with decreasing in cathode potentials in potentiostatic experiments. The maximum formation rate of H_2O_2 and the current efficiency were observed at -0.5 V, this potential is corresponding to the potential of the shoulder peak in Figure 3b. The concentration of H_2O_2 at -0.5 V for 2 h was more than 2.5 wt% with a CE of 40%. These results strongly suggest the formation route of H_2O_2 through eq. 3 and 4 over the [VGCF + AC] cathode. The active phase for the electrochemical reduction of O_2 should be AC. However, the AC electrode without VGCF didn't show the electrochemical activity for the reduction of O_2 (Figure 2). These results proposed that AC functioned as an active site for reduction of O_2 to H_2O_2 and VGCF functioned as an electron conductor, a lead wire.

The [VGCF + AC] cathode is active for the formation of H_2O_2 by the new fuel cell system. However, the CE is not high under short circuit conditions, as shown in Figure 2. In order to increase the CE with keeping a high formation rate of H_2O_2 , various factor of the cathode (contents of VGCF, AC, PTFE, and other additives, total weight of cathode, thickness of cathode, etc.) have been studied. Then, we have found that a content of PTFE strongly affected the CE of the H_2O_2 formation. The CE increased from 19 to 46% with increasing the amount of PTFE from 7 to 40 mg. A time course for the H_2O_2 formation has been studied over the [VGCF (60 mg) + AC (20 mg) + PTFE (40 mg)] cathode. After the reaction for 6 h, the concentration of H_2O_2 achieved to 1.1 wt% with a good CE of 40%. This result shows the high potential of the new fuel cell system for the direct synthesis of H_2O_2 solution with a higher concentration under mild conditions.

References

- 1 P. C. Foller and R. T. Bombard, *J. Appl. Electrochem.*, **25**, 613 (1995).
- 2 Y. Izumi, U. S. Patent 4,009,252 (1978); L. W. Gosset, U. S. Patent 4,681,751 (1988).
- 3 K. Otsuka and I. Yamanaka, *Electrochim. Acta*, **35**, 319 (1990).
- 4 K. Otsuka and I. Yamanaka, *Catal. Today*, **41**, 311 (1998).
- 5 D. T. Sawyer, "Oxygen Chemistry," Oxford Univ. Press, New York (1991).